4.5 Article

Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 70, 期 3, 页码 800-812

出版社

WILEY
DOI: 10.1002/mrm.24524

关键词

compressed sensing; sparse representation; l(1)-norm minimization; spatial and temporal regularization; motion estimation and motion compensation

资金

  1. ONR [N00014-08-0884]
  2. Packard Foundation

向作者/读者索取更多资源

Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensationanother recently proposed recovery algorithm for dynamic magnetic resonance imaging. Magn Reson Med 70:800-812, 2013. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据