4.5 Article

Effect of lanthanide ions on dynamic nuclear polarization enhancement and liquid-state T1 relaxation

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 68, 期 6, 页码 1949-1954

出版社

WILEY
DOI: 10.1002/mrm.24207

关键词

DNP; polarization; pyruvate

资金

  1. GE Healthcare, NIH-NIA [P50-AG033514]

向作者/读者索取更多资源

In the dynamic nuclear polarization process, microwave irradiation facilitates exchange of polarization from a radical's unpaired electron to nuclear spins at cryogenic temperatures, increasing polarization by >10,000. Doping samples with Gd3+ ions further increases the achievable solid-state polarization. However, on dissolution, paramagnetic lanthanide metals can be potent relaxation agents, decreasing liquid-state polarization. Here, the effects of lanthanide metals on the solid and liquid-state magnetic properties of [1-C-13]pyruvate are studied. The results show that in addition to gadolinium, holmium increases not only the achievable polarization but also the rate of polarization. Liquid-state relaxation studies found that unlike gadolinium, holmium minimally affects T1. Additionally, results reveal that linear contrast agents dissociate in pyruvic acid, greatly reducing liquid-state T1. Although macrocyclic agents do not readily dissociate, they yield lower solid-state polarization. Results indicate that polarization with free lanthanides and subsequent chelation during dissolution produces the highest polarization enhancement while minimizing liquid-state relaxation. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据