4.7 Article

Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network

期刊

REMOTE SENSING OF ENVIRONMENT
卷 156, 期 -, 页码 403-417

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2014.09.026

关键词

remote sensing; snow cover; fractional snow cover; alpine-forested environments; Artificial Neural Network; data fusion; IKONOS; Landsat

资金

  1. NASA Earth Science Graduate Fellowship
  2. Mountain Studies Institute
  3. Salt River Project (SRP)
  4. Graduate Interdisciplinary Program in Arid Lands Resource Sciences
  5. Institute of the Environment at the University of Arizona

向作者/读者索取更多资源

There is an undisputed need to increase accuracy of Fractional Snow Cover (FSC) estimation in regions of complex terrain, especially in areas dependent on winter snow accumulation for a substantial portion of their water supply, such as the western United States. The main aim of this research is to develop FSC estimation in complex alpine-forested environments using an Artificial Neural Network (ANN) methodology as a fusion framework between multi-sensor remotely sensed data at medium temporal/spatial resolution (e.g.16-day revisit time; 30 m; Landsat), and high spatial resolutions (e.g.1 m; IKONOS). This research is the first known attempt to develop a multi-scale estimator of FSC from surface equivalent reference data derived from IKONOS multispectral data. It is also the first endeavor to estimate FSC values by combining terrain and snow/non-snow reflectance data. The plasticity of the developed ANN Landsat-FSC model accommodates alpine-forest heterogeneity, and renders unbiased, comprehensive, and precise FSC estimates. The accuracy of the ANN Landsat based FSC is characterized by: (1) very low error values (mean error similar to 0.0002; RMSE similar to 0.10; MAE similar to 0.08 FSC), (2) high correlation with the ground equivalent reference datasets derived from I m resolution IKONOS images (r(2) similar to 0.9), and (3) robust FSC estimation that is independent of terrain/vegetation alpine heterogeneity. The latter is supported by a spatially uniform distribution of errors, and lack of correlation between terrain (slope, aspect, terrain shadow distribution), Normalized Difference Vegetation Index, and the error (r(2) = 0). (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据