4.5 Article

High-Resolution Magnetization-Prepared 3D-FLAIR Imaging at 7.0 Tesla

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 64, 期 1, 页码 194-202

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mrm.22397

关键词

magnetic resonance imaging; high field strength; 3D-FLAIR; high resolution; magnetization preparation

向作者/读者索取更多资源

The aim of the present study is to develop a submillimeter volumetric (three-dimensional) fluid-attenuated inversion recovery sequence at 7T. Implementation of the fluid-attenuated inversion recovery sequence is difficult as increased T(1) weighting from prolonged T(1) constants at 7T dominate the desired T(2) contrast and yield suboptimal signal-to-noise ratio. Magnetization preparation was used to reduce T(1) weighting and improve the T(2) weighting. Also, practical challenges limit the implementation. Long refocusing trains with low flip angles were used to mitigate the specific absorption rate constraints. This resulted in a three-dimensional magnetization preparation fluid-attenuated inversion recovery sequence with 0.8 x 0.8 x 0.8 = 0.5 mm(3) resolution in a clinically acceptable scan time. The contrast-to-noise ratio between gray matter and white matter (contrast-to-noise ratio = signal-to-noise ratio [gray matter] signal-to-noise ratio [white matter]) increased from 12 +/- 9 without magnetization preparation to 28 +/- 8 with magnetization preparation (n = 12). The signal-to-noise ratio increased for white matter by 13 +/- 6% and for gray matter by 48 +/- 15%. In conclusion, three-dimensional fluid-attenuated inversion recovery with high resolution and full brain coverage is feasible at 7T. Magnetization preparation reduces the T(1) weighting, thereby improving the T(2) weighted contrast and signal-to-noise ratio. Magn Reson Med 64:194- 202, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据