4.5 Article

Quantification of SPIO Nanoparticles in vivo Using the Finite Perturber Method

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 65, 期 5, 页码 1461-1469

出版社

WILEY
DOI: 10.1002/mrm.22727

关键词

SPIO; quantitative imaging; finite perturber method; phase gradient mapping

资金

  1. John and Mary Franklin Foundation

向作者/读者索取更多资源

The susceptibility gradients generated by super-paramagnetic iron oxide (SPIO) nanoparticles make them an ideal contrast agent in magnetic resonance imaging. Traditional quantification methods for SPIO nanoparticle-based contrast agents rely on either mapping T-2* values within a region or by modeling the magnetic field inhomogeneities generated by the contrast agent. In this study, a new model-based SPIO quantification method is introduced. The proposed method models magnetic field inhomogeneities by approximating regions containing SPIOs as ensembles of magnetic dipoles, referred to as the finite perturber method. The proposed method was verified using data acquired from a phantom and in vivo mouse models. The phantom consisted of an agar solution with four embedded vials, each vial containing known but different concentrations of SPIO nanoparticles. Gaussian noise was also added to the phantom data to test performance of the proposed method. The in vivo dataset was acquired using five mice, each of which was subcutaneously implanted in the flanks with 1 x 10(5) labeled and 1 x 10(6) unlabeled C6 glioma cells. For the phantom data set, the proposed algorithm was generate accurate estimations of the concentration of SPIOs. For the in vivo dataset, the method was able to give estimations of the concentration within SPIO-labeled tumors that are reasonably close to the known concentration. Magn Reson Med 65:1461-1469, 2011. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据