4.5 Article

Optimal Radiofrequency and Gradient Spoiling for Improved Accuracy of T(1) and B(1) Measurements Using Fast Steady-State Techniques

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 63, 期 6, 页码 1610-1626

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mrm.22394

关键词

T(1) mapping; B(1) mapping; spoiling; diffusion; gradient echo; actual flip-angle imaging; steady state

向作者/读者索取更多资源

Variable flip angle T(1) mapping and actual flip-angle imaging B., mapping are widely used quantitative MRI methods employing radiofrequency spoiled gradient-echo pulse sequences. Incomplete elimination of the transverse magnetization in these sequences has been found to be a critical source of T(1) and B(1) measurement errors. In this study, comprehensive theoretical analysis of spoiling-related errors in variable flip angle and actual flip-angle imaging methods was performed using the combined isochromat summation and diffusion propagator model and validated by phantom experiments. The key theoretical conclusion is that correct interpretation of spoiling phenomena in fast gradient-echo sequences requires accurate consideration of the diffusion effect. A general strategy for improvement of T(1) and B(1) measurement accuracy was proposed based on the strong spoiling regimen, where diffusion-modulated spatial averaging of isochromats becomes a dominant factor determining magnetization evolution. Practical implementation of strongly spoiled variable flip angle and actual flip-angle imaging techniques requires sufficiently large spoiling gradient areas (A(G)) in combination with optimal radiofrequency phase increments (phi(0)). Optimal regimens providing <2% relative T(1) and B(1) measurement errors in a variety of tissues were theoretically derived for prospective in vivo variable flip angle (pulse repetition time = 15-20 ms, A(G) = 280-450 mT.ms/m, (phi(0) = 169 degrees) and actual flip-angle imaging (pulse repetition time(1)/pulse repetition time(2) = 20/100 ms, A(G1)/A(G2) = 450/2250 mT.ms/m, phi(0) = 39 degrees) applications based on 25 mT/m maximal available gradient strength. Magn Reson Med 63:1610-1626, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据