4.5 Article

Estimation of k-Space Trajectories in Spiral MRI

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 61, 期 6, 页码 1396-1404

出版社

WILEY
DOI: 10.1002/mrm.21813

关键词

MRI; spiral imaging; eddy currents; k-space trajectory

资金

  1. National Institutes of Health (NIH)
  2. R01 HL079110
  3. Coulter Foundation
  4. Siemens Medical Solutions
  5. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL079110] Funding Source: NIH RePORTER

向作者/读者索取更多资源

For non-Cartesian data acquisition in MRI, k-space trajectory infidelity due to eddy current effects and other hardware imperfections will blur and distort the reconstructed images. Even with the shielded gradients and eddy current compensation techniques of current scanners, the deviation between the actual k-space trajectory and the requested trajectory remains a major reason for image artifacts in non-Cartesian MRI. It Is often not practical to measure the k-space trajectory for each imaging slice. It has been reported that better image quality is achieved in radial scanning by correcting anisotropic delays on different physical gradient axes. In this article the delay model is applied in spiral k-space trajectory estimation to reduce image artifacts. Then a novel estimation method combining the anisotropic delay model and a simple convolution eddy current model further reduces the artifact level in spiral image reconstruction. The root mean square error and peak error in both phantom and in vivo images reconstructed using the estimated trajectories are reduced substantially compared to the results achieved by only tuning delays. After a one-time calibration, it is thus possible to get an accurate estimate of the spiral trajectory and a high-quality image reconstruction for an arbitrary scan plane. Magn Reson Med 61:1396-1404, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据