4.7 Article

Location and Number of Selenium Atoms in Two-Dimensional Conjugated Polymers Affect Their Band-Gap Energies and Photovoltaic Performance

期刊

MACROMOLECULES
卷 47, 期 20, 页码 7070-7080

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma501720k

关键词

-

资金

  1. National Science Council, Taiwan [NSC 102-3113-P-009-002]

向作者/读者索取更多资源

We synthesized and characterized a series of novel two-dimensional Se-atom-substituted donor (D)-p-acceptor (A) conjugated polymersPBDTTTBO, PBDTTTBS, PBDTTSBO, PBDTSTBO, PBDTTSBS, PBDTSTBS, PBDTSSBO, and PBDTSSBSfeaturing benzodithiophene (BDT) as the donor, thiophene (T) as the p-bridge, and 2,1,3-benzooxadiazole (BO) as the acceptor with different number of Se atoms at different p-conjugated locations, including the pi-bridge, side chain, and electron-withdrawing units. We then systematically investigated the effect of different locations and the number of Se atoms in these two-dimensional conjugated polymers on the structural, optical, and electronics such as band-gap energies of the resulting polymers, as determined through quantum-chemical calculations, UVvis absorption spectra, and grazing-incidence X-ray diffraction. We found that through the rational structural modification of the 2-D conjugated Se-substituted polymers the resulting PCEs could vary over 3-fold (from 2.4 to 7.6%), highlighting the importance of careful selection of appropriate chemical structures such as the location of Se atoms when designing efficient D-p-A polymers for use in solar cells. Among these tested BO-containing polymers, PBDTSTBO that has moderate band gaps and good open-circuit voltages (up to 0.86 V) when mixed with PC71BM (1:2, w/w) provided the highest power conversion efficiency (7.6%) in a single-junction polymer solar cell, suggesting that these polymers have potential applicability as donor materials in the bulk heterojunction polymer solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据