4.7 Article

Unique Rheological Response of Ultrahigh Molecular Weight Polyethylenes in the Presence of Reduced Graphene Oxide

期刊

MACROMOLECULES
卷 48, 期 1, 页码 131-139

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma501729y

关键词

-

资金

  1. Loughborough University, UK
  2. Teijin Aramid, The Netherlands

向作者/读者索取更多资源

The paper addresses the difference in electrical conductivities and rheological properties between two nanocomposites of reduced graphene oxide nanosheets (rGON) with commercial ultrahigh molecular weight polyethylene (C_PE) and a low-entanglement-density UHMWPE synthesized under controlled conditions (Dis_PE). It has been found that composites made with Dis_PE can reach conductivities at least 100 times higher than those made with C_PE on doing thermal treatment at lower temperatures. However, the difference in the electrical conductivity diminishes when both sets of samples are given a high temperature treatment. This phenomenon is attributed to the difference in morphology of the polymer matrices, for example, grain boundaries between the nascent particles. Furthermore, rheological analyses of the two sets of UHMWPE/rGON nanocomposites conclusively demonstrate differences in the interaction between polyethylene chain segments of the disentangled UHMWPE and rGON, compared to the entangled commercial UHMWPE. Both composites show minima in the storage modulus at a specific graphene composition. The strong interaction of polyethylene chains with the filler inhibits disentangled UHMWPE to achieve the thermodynamic equilibrium melt state, whereas in the commercial sample, having a broader molar mass distribution, the higher adhesion probability of the long chains to the graphene surface lowers the elastic modulus of the polymer melt. Correlation between the percolation threshold for electrical conductivity and rheological response of the composites has also been discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据