4.7 Article

Highly Efficient and Versatile Formation of Biocompatible Star Polymers in Pure Water and Their Stimuli-Responsive Self-Assembly

期刊

MACROMOLECULES
卷 47, 期 22, 页码 7869-7877

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma502008j

关键词

-

资金

  1. Australian Research Council via the Future Fellowship [FT110100411]
  2. Australian Postgraduate Award (APA)
  3. Australian Government

向作者/读者索取更多资源

This study demonstrates the rapid and efficient formation of functional core cross-linked star polymers via copper-mediated reversible-deactivation radical polymerization (RDRP) in pure water using fully soluble monomers and cross-linkers. This high throughput arm-first methodology allows the generation of complex nanoarchitectures with tailored core, shell, or periphery- functionalities and is potentially well-suited for biomedical applications given that the macromolecular synthesis is performed entirely in water. To exemplify this approach, different homo- and miktoarm star polymers composed of either poly(N-isopropylacrylamide) (PNIPAM), poly(2-hydroxyethyl acrylate) (PHEA), and poly(ethylene glycol) (PEG) as the polymeric arms are formed. The star products are generated in high yield (8896%) in one-pot and require short reaction times (13 h) and minimal purification steps (dialysis and lyophilization). In addition, the thermal responsivity of PNIPAM-based miktoarm star polymers leading to reversible supramolecular self-assembly is confirmed by DLS and 2D-NOESY NMR analysis. Furthermore, cytotoxicity studies using human embryonic kidney (HEK239T) cells as the model mammalian cells revealed that the star polymers are nontoxic even up to high polymer concentrations (2 mg mL(1)). The simplistic product formation and isolation, combined with the use of water as the polymerization medium, mean that this procedure is highly attractive as a low-cost pathway toward functional, biocompatible organic nanoparticles for commercial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据