4.7 Article

Probing the Internal Morphology of Injectable Poly(oligoethylene glycol methacrylate) Hydrogels by Light and Small-Angle Neutron Scattering

期刊

MACROMOLECULES
卷 47, 期 17, 页码 6017-6027

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma5011827

关键词

-

资金

  1. NSERC Ophthalmic Materials Research Network
  2. Ontario Ministry of Research and Innovation
  3. NSERC
  4. Natural Sciences and Engineering Research Council of Canada (NSERC)
  5. National Research Council Canada (NRC)
  6. Canada Foundation for Innovation (CFI)
  7. Ontario Ministry of Economic Development and Innovation
  8. Province of Ontario
  9. National Science Foundation [DMR-0944772]

向作者/读者索取更多资源

While injectable, in situ gelling hydrogels have attracted increasing attention in the biomedical literature due to their minimally invasive administration potential, little is known about the internal morphology of these hydrogels and thus how to engineer precursor polymer compositions to achieve desired hydrogel properties. In this paper, the internal morphology of injectable in situ gelling hydrogels based on hydrazide and aldehyde-functionalized poly(oligoethylene glycol methacrylate) precursors with varying lower critical solution temperatures (LCSTs) is investigated using a combination of spectrophotometry, small-angle neutron scattering, and light scattering. If two precursor polymers with similar LCSTs are used to prepare the hydrogel, relatively homogeneous hydrogels are produced (analogous to conventional step-growth polymerized hydrogels); this result is observed provided that gelation is sufficiently slow for diffusional mixing to compensate for any incomplete mechanical mixing in the double-barrel syringe and the volume phase transition temperature (VPTT) of the hydrogel is sufficiently high that phase separation does not occur on the time scale of gelation. Hydrogels prepared from precursor polymers with different LCSTs (1 polymer/barrel) also retain transparency, although their internal morphology is significantly less homogeneous. However, if functionalized polymers with different LCSTs are mixed in each barrel (i.e., 2 polymers/barrel, such that a gelling pair of precursors with both low and high LCSTs is present), opaque hydrogels are produced that contain significant inhomogeneities that are enhanced as the temperature is increased; this suggests phase separation of the hydrogel into lower and higher LCST domains. Based on this work, the internal morphology of injectable hydrogels can be tuned by engineering the gelation time and the physical properties (i.e., miscibility) of the precursor polymers, insight that can be applied to improve the design of such hydrogels for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据