4.7 Article

Polymer Chain Shape of Poly(3-alkylthiophenes) in Solution Using Small-Angle Neutron Scattering

期刊

MACROMOLECULES
卷 46, 期 5, 页码 1899-1907

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma302463d

关键词

-

资金

  1. DOE-BES LBL Thermoelectrics Program [DE-AC02-05CH11231]
  2. U.S. Department of Energy, Office of Basic Energy Sciences

向作者/读者索取更多资源

The chain shape of polymers affects many aspects of their behavior and is governed by their intramolecular interactions. De localization of electrons along the backbone of conjugated polymers has been shown to lead to increased chain rigidity by encouraging a planar conformation. Poly(3-hexylthiophene) and other poly(3-alkylthiophenes) (P3ATs) are interesting for organic electronics applications, and it is clear that a hierarchy of structural features in these polymers controls charge transport. While other conjugated polymers are very rigid, the molecular structure of P3AT allows for two different planar conformations and a significant degree of torsion at room temperature. It is unclear, however, how their chain shape depends on variables such as side chain chemistry or regioregularity, both of which are key aspects in the molecular design of organic electronics. Small-angle neutron scattering from dilute polymer solutions indicates that the chains adopt a random coil geometry with a semiflexible backbone. The measured persistence length is shorter than the estimated conjugation length due to the two planar conformations that preserve conjugation but not backbone correlations The persistence length of regioregular P3HT has been measured to be 3 nm at room temperature and decreases at higher temperatures. Changes in the regioregularity, side chain chemistry, or synthetic defects decrease the persistence length by 60-70%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据