4.7 Article

Effect of Interfacial Energetics on Dispersion and Glass Transition Temperature in Polymer Nanocomposites

期刊

MACROMOLECULES
卷 46, 期 7, 页码 2833-2841

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma302281b

关键词

-

资金

  1. Office of Naval Research [N000141-01-02-4-4]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [0928320] Funding Source: National Science Foundation

向作者/读者索取更多资源

Developing structure-property relationships between the filler/matrix interface chemistry and the dispersion and interface properties of polymer nanocomposites (PNC) is critical to predicting their bulk mechanical, electrical, and optical properties. In this paper we develop quantitative relationships between interfacial surface energy parameters and the dispersion and T-g shifts of PNCs through systematic experiments on an array of hybrid systems spanning a wide range of interfacial interactions. We use four different matrices of surface energies varying from polar to nonpolar (poly(2-vinylpyridine) (P2VP), poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and polystyrene (PS)), filled with three monofunctional-silane modifications of colloidal silica nanospheres (octyldimethylmethoxysilane, chloropropyldimethylethoxysilane, and aminopropyldimethylethoxysilane). We hypothesize the ratio of the work of adhesion between filler and polymer to the work of adhesion of filler to filler (W-PF/W-FF), in conjunction with the relative work of adhesion (Delta W-a), can be used to predict the final state of particle dispersion. Additionally, the direction and magnitude of T-g deviation from the neat polymer are hypothesized to depend on the work of spreading (W-s) and the dispersion state. Our results suggest a strong and moderate dependence of dispersion on W-PF/W-FF and Delta W-a, respectively. W-s in conjunction with the dispersion parameters is shown to dictate the change in T-g. Our model represents a significant step toward realizing a priori nanocomposite property prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据