4.7 Article

Characteristics of Self-Assembled Ultrathin Nafion Films

期刊

MACROMOLECULES
卷 46, 期 9, 页码 3461-3475

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma4002319

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Early Researcher Award, Ontario Ministry of Research

向作者/读者索取更多资源

Self-assembled Nafion films of varying thickness were generated on SiO2 terminated silicon wafer by immersion in Nafion dispersions of different concentrations. The impact of solvent/dispersion media was probed by preparing films from two different types of Nafion dispersions-IPA-diluted dispersion and Nafion-in-water dispersion. The thickness of films was ascertained by three different techniques: variable angle spectroscopic ellipsometry (VASE), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The three techniques yielded consistent nominal thicknesses of 4, 10, 30, 55, 75, 110, 160, and 300 nm for films self-assembled from IPA-diluted Nafion dispersions of concentrations 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, and 5.0 wt %, respectively. Films generated from 0.25-5.0 wt % Nafion-in-water dispersions generated comparable thicknesses. An interesting finding of our work is the observation of bimodal surface wettability, investigated by water contact angle. The sub-55 nm films were found to exhibit hydrophilic surface whereas the thicker films showed hydrophobic surface similar to those reported for Nafion membranes Employing XDLVO theory, surface energies of the hydrophobic, 160 nm film was found to be similar to that reported for Nafion membrane whereas those for the hydrophilic 4 nm film yielded high electron-accepting/proton-donating parameters resulting in an enhanced surface polarity. It can be concluded that the structure and properties of the ultrathin (<55 nm) Nafion films are distinct from those of the thicker (but still submicrometer) films, which are likely similar to those of the well Nafion membranes. No significant effect of dispersion type was observed for 10-300 nm thick films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据