4.7 Article

A Minimalist Model of Protein Diffusion and Interactions: The Green Fluorescent Protein within the Cytoplasm

期刊

MACROMOLECULES
卷 46, 期 20, 页码 8311-8322

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma401843h

关键词

-

向作者/读者索取更多资源

In this work, we present a minimalist model (one-bead-per-amino acid resolution) of a tracer protein (the green fluorescent protein) embedded in a meso scale cytoplasm (one-bead-per-crowder) for molecular dynamics simulations. The extremely low computational cost of the model allows a statistically relevant exploration of the tracer diffusive dynamics. The accurate description of diffusion and interactions is maintained by means of a careful choice of the functional forms and parameters of the force field terms, optimized by means of a semiheuristic strategy involving the use of a genetic algorithm. Consequently, the model is capable of implicitly reincluding some effects lost in the coarse graining, such as the shape effects (for crowders), hydrodynamics and correlations, hydration/dehydration and interaction specificity (for the tracer). The result is an accurate representation of the multiscale dynamics of the tracer, involving its internal flexibility, specific protein protein interactions and diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据