4.7 Article

Phase Separation of Poly(methyl methacrylate)/Poly(styrene-co-acrylonitrile) Blends with Controlled Distribution of Silica Nanoparticles

期刊

MACROMOLECULES
卷 45, 期 20, 页码 8420-8429

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma301186b

关键词

-

资金

  1. National Natural Science Foundation of China [50930002, 21074072]
  2. National Basic Research Program of China (973 Program) [2011CB606005]
  3. Program for New Century Excellent Talents in University
  4. SMC project of Shanghai Jiao Tong University

向作者/读者索取更多资源

Effects of selective location of silica nanoparticles on the phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends were investigated via combination of rheological method and optical microscopy. Through grafting polystyrene chain to the surface of silica nanoparticles, the silica nanoparticles were controlled to selectively locate at interfaces or in the PMMA-rich domains. Power-law analysis of the moduli and shifted Cole Cole plots were applied to determine rheological transition temperature (apparent binodal temperature) of blend with near-critical and off-critical compositions for both neat blends and particle-filled blends. The particle location had significant influence on the rheological transition temperature but little impact on optically determined binodal temperature. This discrepancy was discussed through morphology observation via transmission electron microscopy (TEM) for blends under different phase separation conditions. It was found that nanoparticles retard coarsening of morphology during phase separation. The most striking slowdown was found in off-critical blends with nanoparticles located on the interface. On the other hand, nanoparticles preferentially locating in the minor phase could act as nucleation sites but decreased the total number of nuclei. The difference in the rheological transition temperatures is ascribed to the effect of nanoparticles on the components' viscoelasticity and the morphology during phase separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据