4.7 Article

Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides: Effect of Catalyst, Cocatalyst, and Anhydride Structure

期刊

MACROMOLECULES
卷 45, 期 4, 页码 1770-1776

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma2025804

关键词

-

资金

  1. DSM Research

向作者/读者索取更多资源

Ring-opening copolymerization of cyclohexene oxide with alicyclic anhydrides containing different ring strain (succinic anhydride, cyclopropane-1,2-dicarboxylic acid anhydride, and phthalic anhydride) was performed applying metal salen chloride complexes, (salen)MCl (M = Al, Cr, Co; salen = N,N-bis(3,5-di-tert-butylsalicylidene)diimine) with different metals and ligand diimine backbones. While some of the bulk copolymerizations afforded poly(ester-co-ether)s, all solution polymerizations produced perfect alternating copolymers. The chromium catalysts performed best while the aluminum catalysts were the least active ones. For each metal, the salophen complexes yielded the best performing catalyst. A variety of cocatalysts have been employed: bis(triphenylphosphoranylidene)ammonium chloride, N-heterocyclic nucleophiles including 4-(dimethylamino)pyridine, N-methylimidazole, and 1,5,7-triazabicyclododecene and the phosphines trimesitylphosphine, tris(2,4,6-trimethoxyphenyl)phosphine, tricyclohexylphosphine to triphenylphsophine. Of all cocatalysts, bis(triphenylphosphoranylidene)ammonium chloride was found to be the most efficient cocatalyst in combination with salophenCrCl for the copolymerization of cyclohexene oxide with phthalic anhydride, and 1 equiv was enough to reach optimum activity. N-Heterocyclic nucleophiles showed the lowest activity. Of the three anhydrides used, phthalic anhydride is the most reactive giving the highest conversions and the highest molecular weight products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据