4.7 Article

Synthesis and Characterization of Amphiphilic Cyclic Diblock Copolypeptoids from N-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Substituted N-Carboxyanhydride

期刊

MACROMOLECULES
卷 44, 期 24, 页码 9574-9585

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma2020936

关键词

-

资金

  1. Louisiana State University
  2. National Science Foundation [CHE-0955820]
  3. Louisiana State Board of Regents [LEQSF(2008-11)-RD-A-11]
  4. NIH-NCRR COBRE [P20RR017716]
  5. NIST, U.S. Department of Commerce [70NANB7H6178]
  6. Office Of The Director
  7. EPSCoR [814251] Funding Source: National Science Foundation

向作者/读者索取更多资源

N-Heterocyclic carbene (NHC)-mediated ring-opening polymerization of N-decyl-N-carboxylanhydride monomer (De-NCA) has been shown to occur in a controlled manner, yielding cyclic poly(N-decylglycine)s (c-PNDGs) with polymer molecular weights (MW) between 4.8 and 31 kg mol(-1) and narrow molecular weight distributions (PDI < 1.15). The reaction exhibits pseudo-first-order kinetics with respect to monomer concentration. The polymer MW increases linearly with conversion, consistent with a living polymerization. ESI MS and SEC analyses confirm the cyclic architectures of the forming polymers. DSC and WAXS studies reveal that the c-PNDG homopolymers are highly crystalline with two prominent first-order transitions at 72-79 degrees C (T-m,T-1) and 166-177 degrees C (T-m,T-2), which have been attributed to side chain and main chain melting, respectively. A series of amphiphilic cyclic diblock copolypeptoids [i.e., poly(N-methylglycine)-b-poly(N-decylglycine) (c-PNMG-b-PNDG)] with variable molecular weight and composition were synthesized by sequential NHC-mediated polymerization of the corresponding N-methyl-N-carboxyanhydride (Me-NCA) and De-NCA monomers. H-1 NMR analysis reveals that adjusting the initial monomer to NHC molar ratio can readily control the block copolymer chain length and composition. Time-lapsed light scattering and cryogenic transmission electron microscopy (cryo-TEM) analyses of c-PNDG-b-PNMG samples showed that the amphiphilic cyclic block copolypeptoids self-assemble into spherical micelles that reorganize into micrometer-long cylindrical micelles with uniform diameter in room temperature methanol over the course of several days. An identical morphological transition has also been noted for the linear analogues, which occurs more rapidly than for the cyclic copolypeptoids. We tentatively attribute this difference to the different crystallization kinetics of the solvophobic block (i.e., PNDG) in the cyclic and linear block copolypeptoids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据