4.7 Article

Synthesis and Photovoltaic Properties of Quinoxaline-Based Alternating Copolymers for High-Efficiency Bulk-Heterojunction Polymer Solar Cells

期刊

MACROMOLECULES
卷 44, 期 15, 页码 5994-6001

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma102943g

关键词

-

资金

  1. Converging Research Center through the Ministry of Education, Science and Technology [2010K000970]
  2. Korea Energy Management Corporation (KEMCO), Republic of Korea [2008-N-PV08-02]

向作者/读者索取更多资源

A series of quinoxaline-based copolymers, namely, poly[N-9 ''-heptadecanyl-2,7-carbazole-alt-5,5-(5',8'-di-2-thienyl-quinoxaline)] (P1), poly[N-9 ''-heptadecanyl-2,7-carbazole-alt-5,5- (5',8'-di-2-thienyl-2,3-bis (4-octyloxyl)phenyl)quinoxaline] (P2), and poly[N-9 ''-heptadecanyl-2,7-carbazole-alt-5,5-(5',8'-di-2-thienyl-2,3-bis(4-(3,7-dimethyloctyloxy)pheny)quinoxaline] (P3), were synthesized and characterized for use in polymer solar cells (PSCs). We describe the effect of modifying the alkyl group of the side chain of the quinoxaline derivatives on the electronic and optoelectronic properties of the polymers. The field-effect hole mobility as well as the electronic energy levels and processability of the materials for PSC applications were investigated. Among the studied quinoxaline-based copolymers, P2 showed the best photovoltaic performance with an open-circuit voltage (V-OC) of 0.82 V, a short-circuit current density (J(SC)) of 9.96 mA/cm(2), a fill. factor (FF) of 0.49, and a power-conversion efficiency of 4.0% when a P2/PC71BM blend film was used as the active layer under AM 1.5 G irradiation (100 mW/cm(2)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据