4.7 Article

Morphology and Transport Properties of Two-Dimensional Sheet Polymers

期刊

MACROMOLECULES
卷 43, 期 7, 页码 3438-3445

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma902081m

关键词

-

资金

  1. National Science Foundation [CNS-0619508, DMR-0427239]

向作者/读者索取更多资源

Whereas there has been extensive theoretical and experimental investigation of the properties of linear polymer chains in solution, there has been far less work on sheet-like polymers having 2D connectivity and 3D crumpled or collapsed shapes caused by thermal fluctuations, attractive self-interactions, or both. Sheet-like polymers arise in a variety of contexts ranging from self-assembled biological membranes (e.g., the spectrin network of red blood cells, microtubules, etc.) to nanocomposite additives to polymers (carbon nanotubes, graphene, and clay sheets) and polymerized monolayers. We investigate the equilibrium properties of this broad class of polymers using a simple model of a sheet polymer with a locally square symmetry of the connecting beads. We quantify the sheet morphology and the dilute-limit hydrodynamic solution properties as a function of molecular mass and sheet stiffness. First, we reproduce the qualitative findings of previous work indicating that variable sheet stiffness results in a wide variety of morphologies, including flat, crumpled or collapsed spherical, cylindrical or tubular, and folded sheets that serve to characterize our particular 2D polymer model. Transport properties are of significant interest in characterizing polymeric materials, and we provide the first numerical computations of these properties for sheet polymers. Specifically, we calculate the intrinsic viscosity and hydrodynamic radius of these sheet morphologies using a novel path-integration technique and find good agreement of our numerical results with previous theoretical scaling predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据