4.7 Article

Effect of cross-link density on interphase creation in polymer nanocomposites

期刊

MACROMOLECULES
卷 41, 期 18, 页码 6752-6756

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma800830p

关键词

-

资金

  1. Ford-Boeing-Northwestern Alliance
  2. NSF NIRT program [CMS-0404291]
  3. NSF-MRSEC Program at Northwestern University [DMR 0520513]

向作者/读者索取更多资源

The thermal and dynamic behavior of epoxy nanocomposites with varying cross-link density was tested via dynamic scanning calorimetry (DSC) in order to determine the influence of cross-link density on the creation of interphase, zones of altered polymer properties near polymer-particle interfaces. The results show that the inclusion of nanoparticles creates an increase in the glass transition temperature (T-g) at low cross-link density and a decrease in T-g at higher cross-link densities. This phenomenon Suggests that two mechanisms work in tandem to alter the T-g of epoxy systems, with relative magnitudes determined by cross-link density: (1) network disruption at the nanotube-polymer interfaces leading to lower T-g and (2) interphase creation leading to retarded dynamics, resulting in higher Tg. Results show that as cross-link density increases, the length scale of cooperatively rearranging regions (CRRs) decreases. This decrease hinders communication of the dynamics between adjacent CRRs, thereby reducing interphase penetration into the bulk matrix. Moreover, increasing cross-link density leads to increased network disruption due to the presence of nanoparticle obstacles in an otherwise densely connected network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据