4.7 Article

Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay

期刊

MACROMOLECULES
卷 41, 期 22, 页码 8682-8687

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma8020213

关键词

-

资金

  1. Institute of Paper Science and Technology (IPST) at the Georgia Institute of Technology
  2. European Union Marie Curie International Reintegration Grant (IRG [036577]
  3. Southern Clay Products, Inc

向作者/读者索取更多资源

In this work, we employed an in situ polymerization approach to produce polyfurfuryl alcohol (PFA) nanocomposites without the use of solvents or surfactants. On the one hand, furfuryl alcohol (FA) has a dual function, serving both as an effective dispersant for the cellulose whisker (CW) and montmorillonite clay (MMT) nanoparticles and as the matrix precursor for the in situ polymerization. On the other hand, the CW and MMT nanoparticles also serve multiple functions, by first catalyzing the polymerization of FA, and then acting as an effective matrix modifier, increasing the thermal stability of the consolidated PFA nanocomposite. In the case of CW-PFA nanocomposites, the polymerization is catalyzed by sulfonic acid residues at the CW surface, left over from the whisker preparation. In the case of MMT-PFA nanocomposites, the polymerization is catalyzed by Lewis acid sites inherent to the MMT surface. Thermal analysis showed that both types of polymer nanocomposites (PNCs) were characterized by significantly higher temperature at the onset of degradation and higher residual weight after nonoxidative degradation compared to unmodified PFA. Most importantly, by choosing PFA as the matrix and nanoparticles of CW and MMT, we were able to produce nanocomposites that are not only marked by high thermal resistance, but which were produced entirely from biobased precursor materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据