4.3 Article

Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications

期刊

MACROMOLECULAR RESEARCH
卷 21, 期 8, 页码 931-939

出版社

POLYMER SOC KOREA
DOI: 10.1007/s13233-013-1110-x

关键词

chitosan; poly(lactic-co-glycolic acid); co-electrospinning; non-woven fibrous scaffold; cell proliferation; foreign body reaction

资金

  1. Fundamental R&D Program for Technology of World Premier Materials [10037842]
  2. Ministry of Knowledge Economy, Republic of Korea

向作者/读者索取更多资源

The objective of the present study was to evaluate non-woven chitosan/poly(lactic-co-glycolic acid) fibrous scaffold (chitosan/PLGA FS) prepared by a co-electrospinning process for tissue engineering applications, as compared to chitosan and PLGA FSs. The morphological, structural, and mechanical properties of the FSs were assessed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy-attenuated total reflection mode (FTIR-ATR), and a universal testing machine (UTM). The biocompatibility of the FSs was also evaluated in vitro in cultures of mouse fibroblasts and in vivo by subcutaneous implantation studies in rats. SEM image of the chitosan/PLGA FS showed morphological similarities to the natural ECM, characterized by high surface-to-volume ratio, high porosity, and variable pore size distributions. The FTIR-ATR spectrum of chitosan/PLGA FS revealed incorporation of the characteristic bands of chitosan and PLGA, indicating the co-existence of two fibrous structures. The poor mechanical properties of chitosan FS was improved by co-electrospinning with PLGA. In vitro L929 cell proliferation assay revealed that the cytocompatibility of chitosan/PLGA FS was increased compared to that of PLGA. In addition, chitosan/PLGA FS showed the improved ability to resolve foreign body reactions compared to PLGA FS due to the presence of chitosan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据