4.7 Article

Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

期刊

APPLIED SURFACE SCIENCE
卷 355, 期 -, 页码 726-735

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2015.07.143

关键词

Semiconductor metal oxides; Core-shell nanorods; Heterojunctions; Chemiresistive gas sensors; Environmental monitoring

资金

  1. IGCAR-PSGCT [IGCAR-PSG/213]

向作者/读者索取更多资源

A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 degrees C compared to alternate NO2 sensors (300 degrees C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据