4.7 Article

Controlled Dispersion of Silver Nanoparticles into the Bulk of Thermosensitive Polymer Microspheres: Tunable Plasmonic Coupling by Temperature Detected by Surface Enhanced Raman Scattering

期刊

MACROMOLECULAR RAPID COMMUNICATIONS
卷 32, 期 13, 页码 1000-1006

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/marc.201100143

关键词

microgels; nanoparticles; Raman spectroscopy; synthesis; thermal properties

资金

  1. National Natural Science Foundation of China [50725208, 51002007]
  2. National Basic Research Program of China [2010CB934700]

向作者/读者索取更多资源

By in situ reduction of Ag+ ions pre-dispersed inside thermosensitive microspheres of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P(NIPAM-co-MAA)), a 3D copolymer-supported network of silver nanoparticles is created and extensively characterized by surface-enhanced Raman scattering (SERS). The effective dispersion and the suitable density of the silver nanoparticles in the composite microspheres are demonstrated by the thermal-induced SERS signal and its high reproducibility during thermocycling. When the temperature of the system increases above 32 degrees C, spatial separation of the silver nanoparticles decreases and the numbers of Ag nanoparticles and P(NIPAM-co-MAA) microspheres under illumination spot increase as a result of the shrinkage of the P(NIPAM-co-MAA) chains, leading to the ramp of the SERS effect. By means of the high reversibility of the thermosensitive phase transition of the P(NIPAM-co-MAA) microspheres, SERS activity of the silver nanoparticle network embedded in the microsphere can be well controlled by thermal-induced variation of special separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据