4.7 Article

Tracking carbon flow in a 2-week-old and 6-week-old stream biofilm food web

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 53, 期 2, 页码 642-650

出版社

WILEY
DOI: 10.4319/lo.2008.53.2.0642

关键词

-

向作者/读者索取更多资源

We studied the carbon flow of an allochthonous carbon source (sucrose) in a biofilm food web using stable isotope analysis and lipid biomarkers. Initial biofilms were grown for 2 weeks in a third order stream in Thuringia, Germany, and then incubated in replicate flow channels in climate-controlled chambers. Either of two sucrose types, differing in their delta C-13 values, was added either immediately (2-week-old biofilm) or after a pre-incubation of 4 weeks (6-week-old biofilm). Although sucrose decrease rates were similar with both biofilms, 2-week-old biofilms showed a higher carbon uptake capacity cell(-1). The 2-week-old biofilm was characterized by low abundances of all trophic levels, which increased one to two orders of magnitude during sucrose consumption. The 6-week-old biofilm had higher abundances. Biofilm bacteria incorporated added sucrose carbon, but algae showed no significant carbon incorporation, although a part of this carbon should be mineralized to carbon dioxide by bacteria. Sucrose carbon was also incorporated into ciliates and possibly other protozoans. Grazing rates indicated that up to 23.3% of the sucrose carbon reached higher trophic levels in 2-week-old biofilms. Less sucrose carbon was transferred to higher trophic levels in 6-week-old biofilms, where similar carbon amounts might have been channelled via filter feeding from the water column to ciliates. Ciliate community composition seemed to be affected by highly abundant rotifers. Whereas total carbon flow in 2-week-old biofilms was controlled by bacteria capable of high carbon uptake rates, higher trophic levels were more important in 6-week-old biofilms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据