4.7 Article

Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway

期刊

LIFE SCIENCES
卷 92, 期 24-26, 页码 1215-1221

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2013.05.007

关键词

Spinal cord injury; Quercetin; p38MAPK/iNOS signaling pathway; Oxidative stress

资金

  1. Foundation from Scientific Research Project of Department of Health of Zhejiang Province [2010KYB112]

向作者/读者索取更多资源

Aims: The present study aimed to investigate the correlation between quercetin (Que) and the p38 mitogen-activated protein kinase (p38MAPK)/inducible nitric oxide synthase (iNOS) signaling pathway and to explore its regulating effect on secondary oxidative stress following acute spinal cord injury (SCI), so as to elucidate the protective effects and mechanism associated with Que treatment during acute SCI. Main methods: Sprague-Dawley rats were randomly divided into sham-surgery, SCI, Que, methylprednisolone (MP), and specific p38MAPK inhibitor SB203580 treatment groups. Acute SCI models were established in rats by a modified Allen's method. Real-time PCR analysis, western blot assay and immunohistochemistry for molecular changes in the p38MAPK/iNOS signaling pathway, determination of malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, reflecting the levels of secondary oxidative stress, and functional or behavioral data, reflecting changes induced by Que and control treatments post-SCI were performed. Key findings: Que significantly increased Basso, Beattie and Bresnahan scores and inclined plane test scores in SCI rats similar to the positive control drug, MP. Que significantly inhibited increases in phosphorylated-p38MAPK (p-p38MAPK) and iNOS expression and reduced the rate of iNOS-positive cells in rats with SCI, similar to the effects of SB203580. In addition, both Que and SB203580 reduced MDA content and enhanced SOD activity in SCI rats, with Que effects being stronger. Significance: These experimental findings indicate that in SCI rats, Que has protective effects on the spinal cord by the potential mechanism of inhibiting the activation of p38MAPK/iNOS signaling pathway and thus regulating secondary oxidative stress. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据