4.7 Article

The role of MAP kinase phosphatase-1 in the protective mechanism of dexamethasone against endotoxemia

期刊

LIFE SCIENCES
卷 83, 期 19-20, 页码 671-680

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2008.09.003

关键词

Septic shock; Glucocorticoids; Phosphatase; Anti-inflammatory; Cytokines; Mkp-1

资金

  1. NIAID [AI 57798, AI 68956]
  2. NHLBI [HL 75261]

向作者/读者索取更多资源

Aims: We have previously shown that glucocorticoids induce the expression of MAP kinase phosphatase (Mkp)(a)-1 in innate immune cells. Since Mkp-1 is a critical negative regulator of the innate immune response, we hypothesize that Mkp-1 plays a significant role in the anti-inflammatory action of glucocorticoids. The specific aim of the present study is to understand the role of Mkp-1 in the anti-inflammatory function of glucocorticoids. Main methods: Wild-type and Mkp-1(-/-) mice were treated with different doses of dexamethasone and then challenged with different doses of lipopolysaccharide (LPS). The survival and blood cytokines were assessed. The effects of dexamethasone on cytokine production in wild-type and Mkp-1(-/-) primary macrophages ex vivo were also examined. Key findings: We found that dexamethasone induced the expression of Mkp-1 in vivo. Dexamethasone treatment completely protected wild-type mice from the mortality caused by a relatively high dose of LPS. However, dexamethasone treatment offered only a partial protection to Mkp(-/-) mice. Dexamethasone attenuated TNF-alpha production in both wild-type and Mkp(-/-) mice challenged with LPS, although TNF-alpha production in Mkp-1(-/-) mice was significantly more robust than that in wild-type mice. Dexamethasone pretreatment shortened the duration of p38 and JNK activation in LPS-stimulated wild-type macrophages, but had little effect on p38 or JNK activation in similarly treated Mkp-1(-/-) macrophages. Significance: Our results indicate that the inhibition of p38 and JNK activities by glucocorticoids is mediated by enhanced Mkp-1 expression. These results demonstrate that dexamethasone exerts its anti-inflammatory effects through both Mkp-1-dependent and Mkp-1-indepent mechanisms. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据