4.3 Article

5-Aza-2′-deoxycytidine sensitizes busulfan-resistant myeloid leukemia cells by regulating expression of genes involved in cell cycle checkpoint and apoptosis

期刊

LEUKEMIA RESEARCH
卷 34, 期 3, 页码 364-372

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.leukres.2009.08.014

关键词

Busulfan; 5-Aza-2 '-deoxycytidine; Myeloid leukemia; Drug resistance; DNA methylation; Cell cycle signaling; Apoptosis

资金

  1. National Institutes of Health [P01 CA055164, CCSG Core CA16672]
  2. Stephen L. and Lavinia Boyd Fund for Leukemia Research

向作者/读者索取更多资源

Busulfan (Bu) is a DNA-alkylating drug used in myeloablative pretransplant conditioning therapy for patients with myeloid leukemia (ML). A major obstacle to successful treatment is cellular Bu-resistance. To investigate the possible contribution of DNA hypermethylation to Bu-resistance, we examined the cytotoxic activity of combined 5-aza-2'-deoxycytidine (DAC) and Bu. Exposure of Bu-resistant B5/Bu250(6) ML cells to 0.5 mu M DAC resulted in G2-arrest and apoptosis. The observed G2-arrest was associated with hypomethylation and subsequent expression of epigenetically controlled genes including p16(INK4A), activation of the p53 pathway, and phosphorylation of CDC2. The DAC-mediated apoptosis was partly due to hypomethylation and up-regulation of XAF1, which resulted in down-regulation of the anti-apoptotic proteins XIAP, cIAP1 and cIAP2. The pro-apoptotic PUMA and BNIP3 proteins were up-regulated while pro-survival STAT3 and c-MYC were suppressed. Combination of 0.05 mu M DAC and 5 mu g/ml Bu resulted in synergistic cytotoxicity, which was associated with PARP1 cleavage and activation of caspases 3 and 8, suggesting induction of an apoptotic response. P53 inhibition in B5/Bu250(6) cells using pifithrin-alpha alleviated these effects, suggesting a role for p53 therein; this observation was supported by the relative resistance of p53-null K562 cells to [DAC + Bu] combinations and by the effects of an anti-p53 shRNA on the OCI-AML3 cell line. We conclude that the synergistic effects of [DAC + Bu] are p53-dependent and involve cell cycle arrest, apoptosis induction and down-regulation of pro-survival genes. Our results suggest that, depending on tumor p53 status, incorporation of DAC might synergistically improve the cytoreductive efficacy of Bu-based pretransplant regimen in patients with ML. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据