4.3 Article Proceedings Paper

Noxa mediates bortezomib induced apoptosis in both sensitive and intrinsically resistant mantle cell lymphoma cells and this effect is independent of constitutive activity of the AKT and NF-κB pathways

期刊

LEUKEMIA & LYMPHOMA
卷 49, 期 4, 页码 798-808

出版社

INFORMA HEALTHCARE
DOI: 10.1080/10428190801910912

关键词

mantle cell lymphoma; bortezomib; proteasome inhibitor; Noxa; Akt; NF-kappa B

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Bortezomib is more active against mantle cell lymphoma (MCL) than against most other lymphoma subtypes. Nevertheless, up to half of patients with MCL have bortezomib resistant disease. Factors contributing to intrinsic resistance to bortezomib have not been determined. Here we used a panel of eight bortezomib sensitive (median IC(50) 5.9 nM) and three relatively bortezomib resistant cell lines (median IC(50) 12.9 nM) to investigate differences in tumor biology that could determine sensitivity to bortezomib. Bortezomib effectively inhibited high baseline proteasome activity and induced a comparable degree of proteasome inhibition in both sensitive and resistant cells. At 10 nM, bortezomib induced the proapoptotic BH3-only protein Noxa in sensitive but not resistant cells. At higher concentrations of bortezomib, however, Noxa was also upregulated in resistant cells and this effect was sufficient to induce apoptosis. Silencing of Noxa with siRNA rescued these cells from apoptosis, arguing against a defect in Noxa regulation or function as the basis of bortezomib resistance. Bortezomib was equally effective against cells with high and low constitutive NF-kappa B signaling. Also, sensitive and resistant MCL cell lines showed comparable activation of the AKT pathway. We conclude that bortezomib can overcome classic mechanisms of resistance to apoptosis and that determinants of bortezomib sensitivity in MCL are due to differences in signaling or stress pathways upstream of Noxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据