4.0 Article

Novelty-induced arousal enhances memory for cued classical fear conditioning: Interactions between peripheral adrenergic and brainstem glutamatergic systems

期刊

LEARNING & MEMORY
卷 16, 期 10, 页码 625-634

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/lm.1513109

关键词

-

资金

  1. National Science Foundation [NSF-0720170]
  2. American Psychological Association Diversity Program in Neuroscience

向作者/读者索取更多资源

Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in peripheral and/or central arousal modulates memory for Pavlovian fear conditioning. Male rats were either exposed to the conditioning chamber for 5-min or given no exposure 24 h before conditioning with five tone-shock (0.35 mA) pairings. Retention was assessed 48 h later in a different context. Non-pre-exposed animals exhibited significantly greater freezing during conditioned stimulus (CS) presentations than did pre-exposed animals (P < 0.05). The improvement in retention produced by novelty was attenuated by pretraining a blockade of peripheral beta-adrenergic receptors with sotalol (6 mg/kg, i.p.). Study 2 revealed that novelty-induced increases in peripheral autonomic output are conveyed to the brain by visceral afferents that synapse upon brainstem neurons in the nucleus tractus solitarius (NTS). Blocking AMPA receptor activity in the NTS with CNQX (1.0 mu g) significantly reduced freezing to the CS in non-pre-exposed animals (P < 0.01). Study 3 showed that elevating epinephrine levels in habituated animals influences learning through mechanisms similar to those produced by novelty-induced arousal. Pre-exposed animals given epinephrine (0.1 mg/kg) froze significantly more than saline controls (P < 0.01), and this effect was attenuated by intra-NTS infusion of CNQX. The findings demonstrate that novelty-induced arousal or increasing sympathetic activity with epinephrine in pre-exposed animals enhances memory through adrenergic mechanisms initiated in the periphery and transmitted centrally via the vagus/NTS complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据