4.4 Article

In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium-aluminium-garnet laser and silicon carbide paper

期刊

LASERS IN MEDICAL SCIENCE
卷 24, 期 6, 页码 925-939

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s10103-008-0628-1

关键词

Osteoblast; Fibroblast; Nd:YAG laser; SiC paper; Contact angle

向作者/读者索取更多资源

The effects of neodymium:yttrium-aluminium-garnet (Nd:YAG) laser and silicon carbide (SiC) paper on the surface micro-topography of titanium-6 aluminium-4 vanadium (Ti6Al4V) alloy were examined in relation to the response of bone cells. The study was performed in three distinct stages: (1) after surface treatment of samples by laser and SiC paper, the surface hardness, surface roughness, corrosion resistance and surface tension were evaluated; (2) the growth of mouse connective tissue fibroblast cells (L-929) on untreated and treated samples was assessed in vitro; (3) the response of goat osteoblast cells to untreated and treated implanted samples was assessed in vivo. The surface roughness varied between 7 +/- 0.02 for laser-treated samples (LTSs) at 140 J cm(-2) and 21.8 +/- 0.05 for mechanically treated samples (MTSs). The surface hardness was found to vary from 377 Vickers hardness number (VHN) for MTSs to 850 VHN for LTSs. A corrosion potential of -0.21V was achieved for the LTSs compared with -0.51V for the MTSs. The LTSs exhibited a more hydrophilic behaviour (i.e. wettability) than did the MTSs. No cytotoxicity effect, unlike for the MTSs, was observed for the LTSs. The results of in vivo tests indicated longitudinal growth of osteoblast cells along the grooves on the samples formed by the SiC paper, and multidirectional spreading of the cells on the LTSs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据