4.8 Review

Hydrogen generation from photoelectrochemical water splitting based on nanomaterials

期刊

LASER & PHOTONICS REVIEWS
卷 4, 期 4, 页码 517-528

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.200910025

关键词

Hydrogen; photoelectrochemistry; nanomaterials; water splitting; PEC

资金

  1. BES Division of the US DOE
  2. University of California Energy Institute (UCEI) [SC-08-93]
  3. NSF of China

向作者/读者索取更多资源

Hydrogen is potentially one of the most attractive and environmentally friendly fuels for energy applications. Safe and efficient generation, storage, and utilization of hydrogen present major challenges in its widespread use. Hydrogen generation from water splitting represents a holy grail in energy science and technology, as water is the most abundant hydrogen source on the Earth. Among different methods, hydrogen generation from photoelectrochemical (PEC) water splitting using semiconductors as photoelectrodes is one of the most scalable and cost-effective approaches. Compared to bulk materials, nanostructured semiconductors offer potential advantages in PEC application due to their large surface area and size-dependent properties, such as increased absorption coefficient, increased band-gap energy, and reduced carrier-scattering rate. This article provides a brief overview of some recent research activities in the area of hydrogen generation from PEC water splitting based on nanostructured semiconductor materials, with a particular emphasis on metal oxides. Both scientific and technical issues are critically analyzed and reviewed. [GRAPHICS] SEM image of ZnO nanowire array on ITO substrate (left) and linear sweep voltammograms from undoped ZnO nanowires in the dark, undoped ZnO nanowires and N-doped ZnO nanowires at 100 mW/cm(2). (C) 2010 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据