4.6 Article

Highly Porous Cationic Polyelectrolytes via Oil-in-Water Concentrated Emulsions: Synthesis and Adsorption Kinetic Study

期刊

LANGMUIR
卷 34, 期 35, 页码 10353-10362

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b01645

关键词

-

资金

  1. Ministry of Education, Science and Technology of the Republic of Slovenia
  2. Slovenian Research Agency [P2-0145]

向作者/读者索取更多资源

This work merges the fields of highly porous polymers (polymerized high internal phase emulsions, polyHIPEs) and synthetic cationic polyelectrolytes and introduces a new approach toward the synthesis of highly porous cationic polyelectrolytes. Cationic polyelectrolytes based on (3-acrylamidopropyl)-trimethylammonium chloride (AMPTMA) were synthesized directly through the oil-in-water HIPEs. The resulting polyelectrolyte-based polyHIPEs are distinguished by the highly porous morphology as well as high concentration and accessibility of the cationic N-quaternized functional groups. The most efficient AMPTMA-based polyelectrolyte polyHIPE exhibits the total ion-exchange capacity of 3.53 mmol of AgNO3 per gram of dry resin and the water uptake of up to 95 g.g(-1), which is a great improvement as compared to the state-of-the-art of polyHIPE absorbents bearing cationic moieties. Results of erythrosine dye adsorption show that chemisorption is a rate-determining step because adsorption follows the pseudo-second-order kinetic model. Multilinearity of the Weber and Morris plots assumes that more than one regime is involved in the diffusion of the erythrosine dye molecules into the polyHIPE structure with the diffusion in between the swollen polymer chains as a rate-limiting step.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据