4.6 Article

Holistic Assessment of Covalently Labeled Core-Shell Polymeric Nanoparticles with Fluorescent Contrast Agents for Theranostic Applications

期刊

LANGMUIR
卷 30, 期 2, 页码 631-641

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la403943w

关键词

-

资金

  1. National Heart Lung and Blood Institute of the National Institutes of Health as a Program of Excellence in Nanotechnology [HHSN268601000046C]
  2. National Science Foundation [CHE-1057441]
  3. Welch Foundation through the W. T. Doherty-Welch Chair in Chemistry [A-0001]
  4. Division Of Chemistry
  5. Direct For Mathematical & Physical Scien [1057441] Funding Source: National Science Foundation

向作者/读者索取更多资源

The successful development of degradable polymeric nanostructures as optical probes for use in nanotheranostic applications requires the intelligent design of materials such that their surface response, degradation, drug delivery, and imaging properties are all optimized. In the case of imaging, optimization must result in materials that allow differentiation between unbound optical contrast agents and labeled polymeric materials as they undergo degradation. In this study, we have shown that use of traditional electrophoretic gel-plate assays for the determination of the purity of dye-conjugated degradable nanoparticles is limited by polymer degradation characteristics. To overcome these limitations, we have outlined a holistic approach to evaluating dye and peptide-polymer nanoparticle conjugation by utilizing steady-state fluorescence, anisotropy, and emission and anisotropy lifetime decay profiles, through which nanoparticle-dye binding can be assessed independently of perturbations, such as those presented during the execution of electrolyte gel-based assays. This approach has been demonstrated to provide an overall understanding of the spectral signature-structure-function relationship, ascertaining key information on interactions between the fluorophore, polymer, and solvent components that have a direct and measurable impact on the emissive properties of the optical probe. The use of these powerful techniques provides feedback that can be utilized to improve nanotheranostics by evaluating dye emissivity in degradable nanotheranostic systems, which has become increasingly important as modern platforms transition to architectures intentionally reliant on degradation and built-in environmental responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据