4.6 Article

Preparation of High Internal Water-Phase Double Emulsions Stabilized by a Single Anionic Surfactant for Fabricating Interconnecting Porous Polymer Microspheres

期刊

LANGMUIR
卷 30, 期 41, 页码 12154-12163

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la502564r

关键词

-

资金

  1. National Natural Science Foundation of China [21074122, 51373160, 50873096]

向作者/读者索取更多资源

Herein we report a one-step method to prepare high internal water-phase double emulsions (W/O/W) via catastrophic phase inversion of water-in-oil high internal phase emulsions (W/O HIPEs) stabilized solely by 12-acryloxy-9-octadecenoic acid (AOA) through increasing the content of water phase. This is the first time for double emulsions to be stabilized solely by a single small molecular surfactant, which are usually costabilized by both hydrophilic and hydrophobic surfactants. After neutralized with ammonia, AOA is confirmed to be capable of stabilizing both W/O emulsions and O/W emulsions, which may account for its unique ability to stabilize double emulsions. The effects of different conditions (including changing the concentrations of AOA and salt (NaCl), pH value, the polarity of oils, the addition interval of water and stirring rate, etc.) on the formation and the stability of double emulsions as well as the inversion point have been investigated by using optical microscopy and conductivity monitoring. Finally, porous polymer microspheres with high interconnection (polyHIPE microspheres) were fabricated by gamma-ray initiated polymerization of the as-prepared double emulsions composed of different monomers (styrene, or n-butyl acrylate, or methyl methacrylate), which have been confirmed by scanning electron microscopy. Our method is facile and effective for preparing high interconnecting porous polymer microspheres without tedious post-treatment of the products in common emulsion polymerization due to the use of polymerizable surfactant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据