4.6 Article

Light-Reducible Dissipative Nanostructures Formed at the Solid-Liquid Interface

期刊

LANGMUIR
卷 30, 期 47, 页码 14219-14225

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la5036568

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [22710102, 25220805]
  2. JST CREST

向作者/读者索取更多资源

Dissipative structures are macroscopic or even larger ordered structures that emerge under conditions far from thermodynamic equilibrium. In contrast, molecular self-assembly has been investigated near at the thermodynamic equilibrium, which provides basically smaller, nano-to-micron sized structures. In terms of the formation principles, there exists an essential gap between the dissipative structures and molecular self-assemblies. To fill this gap, molecular self-assembly of light-reducible organic-inorganic ion pairs was investigated under far-from-equilibrium conditions. When solid films of tetraalkylammonium hexafluorophosphate were immersed in aqueous Au(OH)4(-) and immediately photoirradiated, gold nanowires are formed at the solid-aqueous interface. On the other hand, such nanowires were not formed when the photoirradiation was conducted for the specimens after a prolonged immersion period of 60 min. These observations indicate spontaneous growth of dissipative nanofibrous self-assemblies consisting of light-reducible ion pairs [tetraalkylammonium ion][Au(OH)4(-) at the interface and their photoreduction to give developed nanowires. These nanowires are not available by the photoreduction of Au(OH)4(-) ions under conditions near at the thermodynamic equilibrium. A picture for the dissipative nanostructures is obtained: the formation of amphiphilic light-reducible nanowire structures is based on the static self-assembly near at the thermodynamic equilibrium, whereas their spontaneous, anisotropic growth from the interface to the aqueous phase is directed by dynamic, dissipative self-assembly phenomena under the far-from-equilibrium conditions. Thus, the both elements of dissipative self-assembly (dynamic) and static molecular self-assembly fuse together at the nanoscale, which is an essential feature of the dissipative nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据