4.6 Article

Liquid Drops Impacting Superamphiphobic Coatings

期刊

LANGMUIR
卷 29, 期 25, 页码 7847-7856

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la401120j

关键词

-

资金

  1. DFG [BU 1556/27]
  2. [SPP 1273]
  3. [SPP 1486]

向作者/读者索取更多资源

The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol water and glycerin water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据