4.6 Article

Cu Salt Ink Formulation for Printed Electronics using Photonic Sintering

期刊

LANGMUIR
卷 29, 期 35, 页码 11192-11197

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la402026r

关键词

-

资金

  1. [25810140]
  2. Grants-in-Aid for Scientific Research [25810140] Funding Source: KAKEN

向作者/读者索取更多资源

We formulate copper salt (copper formate/acetate/oleate) precursor inks for photonic sintering using high-intensity pulsed light (HIPL) based on the ink's light absorption ability. The inks can be developed through controllable crystal field splitting states (i.e., the ligand weights and their coordination around the metal centers). The inks light absorption properties are extremely sensitive to the carbon chain lengths of the ligands, and the ink colors can drastically change. From the relationship between the ratios of C/Cu and the required sintering energies, it is possible to ascertain that the integral absorbance coefficients are strongly correlated with the photonic sintering behavior. These. results suggest that the ink absorbance properties are the most important factors in photosintering. The wires formed by sintered copper formate complex ink via the HIPL method showed good electronic conduction, achieving a low resistivity of 56 x 10(-5) Omega cm. However, the resistivity of the wires increased with increasing contains carbon chain length of the inks, suggesting that large amounts of residual carbon have negative effects on both the wire's surface morphology and the electrical conductivity. We find in this study that high light absorptivity and low carbon inks would lead to a lower environmental load in future by reducing both energy usage and carbon oxide gas emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据