4.6 Article

Grafting of Functionalized [Fe(III)(salten)] Complexes to Au(111) Surfaces via Thiolate Groups: Surface Spectroscopic Characterization and Comparison of Different Linker Designs

期刊

LANGMUIR
卷 29, 期 27, 页码 8534-8543

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la400663y

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 677]

向作者/读者索取更多资源

Functionalization of surfaces with spin crossover complexes is an intensively studied topic. Starting from dinuclear iron(III)-salten complexes [Fe(salten)(pyS)](2)(BPh4)(2) and [Fe(thiotolylsalten)(NCS)](2) with disulfide-containing bridging ligands, corresponding mononuclear complexes [Fe(salten)(pyS)](+) and [Fe(thiotolylsalten)(NCS)] are covalently attached to Au(111) surfaces (pySH, pyridinethiol; salten, bis(3-salicylidene-aminopropyl)amine). The adsorbed monolayers are investigated by infrared reflection absorption spectroscopy (IRRAS) in combination with X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). Comparison of the surface vibrational spectra with bulk data allows us to draw conclusions with respect to the geometry of the adsorbed complexes. An anomaly is observed in the spectra of the surface-adsorbed monolayer of [Fe(salten)(pyS)](+), which suggests that the salten ligand is partially decoordinated from the Fe(III) center and one of its phenolate arms binds to the Au(111) surface. For complex [Fe(thiotolylsalten)(NCS)] that is bound to the Au(111) surface via a thiolate-functionalized salten ligand, this anomaly is not observed, which indicates that the coordination sphere of the complex in the bulk is retained on the surface. The implications of these results with respect to the preparation of surface-adsorbed monolayers of functional transition-metal complexes are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据