4.6 Article

Nanoparticles Assume Electrical Potential According to Substrate, Size, and Surface Termination

期刊

LANGMUIR
卷 29, 期 5, 页码 1634-1641

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la304472w

关键词

-

资金

  1. GACR [P108/12/G108]
  2. AVCR [M100100902]

向作者/读者索取更多资源

Electrical potential of nanoparticles under relevant environment is substantial for their applications in electronics as well as sensors and biology. Here, we use Kelvin force microscopy to characterize electrical properties of semiconducting diamond nanoparticles (DNPs) of 5-10 nm nominal size and metallic gold nanoparticles (20 and 40 nm) on Si and Au substrates under ambient conditions. The DNPs are deposited on Si and Au substrates from dispersions with well-defined zeta-potential. We show that the nanoparticle potential depends on its size and that the only reliable potential characteristic is a linear fit of this dependence within a 5-50 nm range. Systematically different potentials of hydrogenated, oxidized, and graphitized DNPs are resolved using this methodology. The differences are within 50 mV, that is much lower than on monocrystalline diamond. Furthermore, all of the nanoparticles assume their potential within -60 mV according to the Au and Si substrate, thus gaining up to 0.4 V difference. This effect is attributed to DNP charging by charge transfer and/or polarization. This is confirmed by secondary electron emission. Such effects are general with broad implications for nanoparticles applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据