4.6 Article

Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale

期刊

LANGMUIR
卷 29, 期 47, 页码 14519-14526

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la403445j

关键词

-

资金

  1. Australian Research Council through a Discovery Grant
  2. Australian Research Council

向作者/读者索取更多资源

The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid-solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid-solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid-solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据