4.6 Article

Supramolecularly Oriented Immobilization of Proteins Using Cucurbit[8]uril

期刊

LANGMUIR
卷 28, 期 47, 页码 16364-16371

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la303987c

关键词

-

资金

  1. Dutch Ministry of Economic Affairs, Agriculture and Innovation
  2. BioMedical Materials Institute [P4.02]

向作者/读者索取更多资源

A supramolecular strategy is used for oriented positioning of proteins on surfaces. A viologen-based guest molecule is attached to the surface, while a naphthol guest moiety is chemoselectively ligated to a yellow fluorescent protein. Cucurbit[8]uril (CB[8]) is used to link the proteins onto surfaces through specific charge-transfer interactions between naphthol and viologen inside the CB cavity. The assembly process is characterized using fluorescence and atomic force microscopy, surface plasmon resonance, IR-reflective absorption, and X-ray photoelectron spectroscopy measurements. Two different immobilization routes are followed to form patterns of the protein ternary complexes on the surfaces. Each immobilization route consists of three steps: (i) attaching the viologen to the glass using microcontact chemistry, (ii) blocking, and (iii) either incubation or microcontact printing of CB[8] and naphthol guests. In both cases uniform and stable fluorescent patterns are fabricated with a high signal-to-noise ratio. Control experiments confirm that CB[8] serves as a selective linking unit to form stable and homogeneous ternary surface-bound complexes as envisioned. The attachment of the yellow fluorescent protein complexes is shown to be reversible and reusable for assembly as studied using fluorescence microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据