4.6 Article

A Stimulus-Responsive Shape-Persistent Micelle Bearing a Calix[4]arene Building Block: Reversible pH-Dependent Transition between Spherical and Cylindrical Forms

期刊

LANGMUIR
卷 28, 期 6, 页码 3092-3101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la2037668

关键词

-

资金

  1. JST CREST
  2. Grants-in-Aid for Scientific Research [10J10006] Funding Source: KAKEN

向作者/读者索取更多资源

A series of cationic calix[4]arene-based lipids with alkyl chains of varying length were newly synthesized, and the ones with propyl and hexyl tails, denoted by CaL[4]C3 and C6, respectively, were found to form spherical micelles at low pH (protonated state of the amine headgroup). Upon deprotonation with increasing pH, CaL[4]C3 showed a sphere-to-cylinder transition, while CaL[4]C6 changed from sphere, to cylinder, to monolayer vesicle. Synchrotron small-angle X-ray scattering (SAXS) patterns from both spherical and cylindrical CaL[4]C3 micelles exhibited a sharp intensity minimum, indicating shape monodispersity. The monodispersity of the CaL[4]C3 spherical micelles was further confirmed by analytical ultracentrifugation (AUC). SAXS, AUC, and static light scattering agreeingly indicated an aggregation number of 6. In contrast, CaL[4]C6 exhibited polydispersity with an average aggregation number of 12. When the number of carbons of the alkyl chain was increased to 9 (CaL[4]C9), cylinder formed at low pH, while at high pH, no clear morphology could be observed. The present results indicate that a very precise combination of tail length, head volume, and rigidity of the building block is required to produce shape-persistent micelles and that the shape-persistence can be maintained upon a structural transition. An attempt to reconstruct a molecular model for the spherical CaL[4]C3 micelle was made With an ab initio shape determining program.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据