4.6 Article

In Situ Formed Catalytically Active Ruthenium Nanocatalyst in Room Temperature Dehydrogenation/Dehydrocoupling of Ammonia-Borane from Ru(cod)(cot) Precatalyst

期刊

LANGMUIR
卷 28, 期 11, 页码 4908-4914

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la2049162

关键词

-

资金

  1. CNRS
  2. Idecat REX project

向作者/读者索取更多资源

The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH3BH3) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 degrees C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-eta(2)-cyclooctadiene; cot = 1,3,5-eta(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and B-11, N-15, and H-1 NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod) (cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc. 2011, 133, 18889) by performing Hg(0), CS2 poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru-n cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H-2 at the complete conversion of AB to polyaminoborane (PAB; [NH2BH2](n)) and polyborazylene (PB; [NHBH](n)) units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据