4.6 Article

Synthesis, Characterization, and 3D-FDTD Simulation of Ag@SiO2 Nanoparticles for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy

期刊

LANGMUIR
卷 28, 期 24, 页码 9140-9146

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la3005536

关键词

-

资金

  1. NSF of China [21021002, 21033007]
  2. Innovation Method Fund of China [2010IM040100]

向作者/读者索取更多资源

Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO2 shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO2 shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO2 shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO2 shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据