4.6 Article

Electrodeposition of Platinum Nanoparticles in a Room-Temperature Ionic Liquid

期刊

LANGMUIR
卷 27, 期 23, 页码 14662-14668

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la202992m

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [19206079]
  2. Government of Japan
  3. Taiwanese Government

向作者/读者索取更多资源

The electrochemistry of the [PtCl6](2-)-[PtCl4](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF4)] has been examined. The two-step four electron reduction of [PtCl6](2-) to Pt, i.e., reduction of [PtCl6](2-) to [PtCl4](2-) and fluffier reduction of [PtCl4](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl6](2-) to Pt in aqueous media The cathodic and anodic peaks corresponding to the [PtCl6](2-)/[PtCl4](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl4](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl6](2-) (i.e., [PtCl4](2-)) to [PtCl6](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanopartides could be carried out on a GC electrode in DEMEBF4 containing [PtCl6](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl6](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl6](2-) to [PtCl4](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl6](2-) to [PtCl4](2-) and further [PtCl4](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl4](2-) to [PtCl6](2-) and Pt Furthermore, the deposition potential of Pt nanopartides was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanopartides are grown to form bixer particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt partides of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanopartides prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据