4.6 Article

Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification

期刊

LANGMUIR
卷 28, 期 2, 页码 1588-1595

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la203106w

关键词

-

资金

  1. Georgia State University
  2. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]

向作者/读者索取更多资源

Current rectification is well known in ion transport through nanoscale pores and channel devices. The measured current is affected by both the geometry and fixed interfacial charges of the nanodevices. In this article, an interesting trend is observed in steady-state current potential measurements using single conical nanopores. A threshold low-conductivity state is observed upon the dilution of electrolyte concentration. Correspondingly, the normalized current at positive bias potentials drastically increases and contributes to different degrees of rectification. This novel trend at opposite bias polarities is employed to differentiate the ion flux affected by the fixed charges at the substrate-solution interface (surface effect), with respect to the constant asymmetric geometry (volume effect). The surface charge density (SCD) of individual naanopores, an important physical parameter that is challenging to measure experimentally and is known to vary from one nanopore to another, is directly quantified by solving Poisson and Nernst-Planck equations in the simulation of the experimental results. The flux distribution inside the nanopore and the SCD of individual nanopores are reported. The respective diffusion and migration translocations are found to vary at different positions inside the nanopore. This knowledge is believed to be important for resistive pulse sensing applications because the detection signal is determined by the perturbation of the ion current by the analytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据