4.6 Article

Effects of Surfactant Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica Nanoparticles and Cationic Surfactant

期刊

LANGMUIR
卷 26, 期 7, 页码 4717-4724

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la903589e

关键词

-

向作者/读者索取更多资源

Silica nanoparticles without any surface modification are not surface active at the toluene-water interface due to their extreme hydrophilicity but can be surface activated in situ by adsorbing cationic surfactant from water. This work investigates the effects of the molecular structure of water-soluble cationic surfactant on the surface activation of the nanoparticles by emulsion characterization, adsorption and zeta potential measurements, dispersion stability experiments, and determination of relevant contact angles. The results show that an adsorbed cationic surfactant monolayer on particle surfaces is responsible for the wettability modification of the particles. In the presence of a trace amount of cationic surfactant, the hydrophobicity of the particles increases, leading to the formation of stable oil-in-water O/W(1) emulsions. At high surfactant concentration (> cmc) the particle surface is retransformed to hydrophilic due to double-layer or hemimicelle formation, and the concentration of the free surfactant in the aqueous phase is high enough to stabilize emulsions alone. O/W(2) emulsions, probably costabilized by free surfactant and particles, are then formed. The monolayer adsorption seems to be charge-site dependent. Thus, using single-chain trimethylammonium bromide surfactants or a doable-head gemini cationic surfactant, the hydrophobicity of the particles achieved is not sufficient to stabilize water-in-oil (W/O) emulsions, and no phase inversion is induced. However, using a double-chain cationic surfactant, the chain density on the particle surfaces endows them with a hydrophobicity high enough to stabilize W/O emulsions, and double phase inversion, O/W(1) - W/O - O/W(2), can then be achieved by increasing the surfactant concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据