4.6 Article

In Vitro Mineralization by Preosteoblasts in Poly(DL-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles

期刊

LANGMUIR
卷 26, 期 14, 页码 12126-12131

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la101519b

关键词

-

资金

  1. NIH [DPI OD000798]
  2. Washington University in St. Louis
  3. NSF [ECS-0335765]
  4. Korean Government [KRE-2007-357-D00080]

向作者/读者索取更多资源

Inverse opal scaffolds made of poly(DL-lactide-co-glycolide) (PLGA) and hydroxyapatite (HAp) were fabricated using cubic-closed-packed (ccp) lattices of uniform gelatin microspheres as templates and evaluated for bone tissue engineering. The scaffolds exhibited a uniform pore size (213 +/- 4.4 mu m), a porosity of similar to 75%, and an excellent connectivity in three dimensions. Three different formulations were examined: pure PLGA, HAp-impregnated PLGA (PLGA/HAp), and apatite (Ap)-coated PLGA/HAp. After seeding with preosteoblasts (MC3T3-E1), the samples were cultured for different periods of time and then characterized by X-ray microcomputed tomography (micro-CT) and scanning electron microscopy to evaluate osteoinductivity in terms of the amount and spatial distribution of mineral secreted from the differentiated preosteoblasts. Our results indicate that preosteoblasts cultured in the Ap-coated PLGA/HAp scaffolds secreted the largest amount of mineral, which was also homogeneously distributed throughout the scaffolds. In contrast, the cells in the pure PLGA scaffolds secreted very little mineral, which was mainly deposited around the perimeter of the scaffolds. These results suggest that the uniform pore structure and favorable surface properties could facilitate the uniform secretion of extracellular matrix from cells throughout the scaffold. The Ap-coated PLGA/HAp scaffold with uniform pore structure could be a promising material for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据